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Summary. Multiple-hypothesis testing involves guarding against much more complicated 
errors than single-hypothesis testing. Whereas we typically control the type I error rate for 
a single-hypothesis test, a compound error rate is controlled for multiple-hypothesis tests. 
For example, controlling the false discovery rate FDR traditionally involves intricate sequential 
p-value rejection methods based on the observed data. Whereas a sequential p-value method 
fixes the error rate and estimates its corresponding rejection region, we propose the opposite 
approach-we fix the rejection region and then estimate its corresponding error rate. This new 
approach offers increased applicability, accuracy and power. We apply the methodology to both 
the positive false discovery rate pFDR and FDR, and provide evidence for its benefits. It is 
shown that pFDR is probably the quantity of interest over FDR. Also discussed is the calculation 
of the q-value, the pFDR analogue of the p-value, which eliminates the need to set the error 
rate beforehand as is traditionally done. Some simple numerical examples are presented that 
show that this new approach can yield an increase of over eight times in power compared with 
the Benjamini-Hochberg FDR method. 

Keywords: False discovery rate; Multiple comparisons; Positive false discovery rate; p-values; 
q-values; Sequential p-value methods; Simultaneous inference 

1. Introduction 

The basic paradigm for single-hypothesis testing works as follows. We wish to test a null 
hypothesis Ho versus an alternative H1 based on a statistic X. For a given rejection region 
r, we reject Ho when X E F and we accept Ho when X rF. A type I error occurs when X E F 
but Ho is really true; a type II error occurs when X rF but H1 is really true. To choose r, 
the acceptable type I error is set at some level a; then all rejection regions are considered that 
have a type I error that is less than or equal to a. The one that has the lowest type II error 
is chosen. Therefore, the rejection region is sought with respect to controlling the type I error. 
This approach has been fairly successful, and often we can find a rejection region with nearly 
optimal power (power = 1 - type II error) while maintaining the desired a-level type I error. 

When testing multiple hypotheses, the situation becomes much more complicated. Now each 
test has type I and type II errors, and it becomes unclear how we should measure the overall 
error rate. The first measure to be suggested was the familywise error rate FWER, which is the 
probability of making one or more type I errors among all the hypotheses. Instead of controlling 
the probability of a type I error at level a for each test, the overall FWER is controlled at level 
a. None-the-less, a is chosen so that FWER < a, and then a rejection region r is found that 
maintains level a FWER but also yields good power. We assume for simplicity that each test 
has the same rejection region, such as would be the case when using the p-values as the statistic. 
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In pioneering work, Benjamini and Hochberg (1995) introduced a multiple-hypothesis testing 
error measure called the false discovery rate FDR. This quantity is the expected proportion of 
false positive findings among all the rejected hypotheses. In many situations, FWER is much 
too strict, especially when the number of tests is large. Therefore, FDR is a more liberal, yet 
more powerful, quantity to control. In Storey (2001), we introduced the positive false discovery 
rate pFDR. This is a modified, but arguably more appropriate, error measure to use. 

Benjamini and Hochberg (1995) provided a sequential p-value method to control FDR. This 
is really what an FDR controlling p-value method accomplishes: using the observed data, it 
estimates the rejection region so that on average FDR < a for some prechosen a. The product 
of a sequential p-value method is an estimate k that tells us to reject P(), P(2) ... p where 

P(1) < P(2) < ... P(m) are the ordered observed p-values. 
What can we say about k? Is there any natural way to provide an error measure on this random 

variable? It is a false sense of security in multiple-hypothesis testing to think that we have a 100% 
guaranteed upper bound on the error. The reality is that this process involves estimation. The 
more variable the estimate of k is, the worse the procedure will work in practice. Therefore, the 
expected value may be that FDR < a, but we do not know how reliable the methods are case 
by case. If point estimation only involved finding unbiased estimators, then the field would not 
be so successful. Therefore, the reliability of k case by case does matter even though it has not 
been explored. 

Another weakness of the current approach to false discovery rates is that the error rate is 
controlled for all values of mo (the number of true null hypotheses) simultaneously without us- 
ing any information in the data about mo. Surely there is information about mo in the observed 
p-values. In our proposed method, we use this information, which yields a less stringent pro- 
cedure and more power, while maintaining strong control. Often, the power of the multiple- 
hypothesis testing method decreases with increasing m. This should not be so, especially when 
the tests are independent. The larger m, the more information we have about mo, and this should 
be used. 

In this paper, we propose a new approach to false discovery rates. We attempt to use more 
traditional and straightforward statistical ideas to control pFDR and FDR. Instead of fixing a 
and then estimating k (i.e. estimating the rejection region), we fix the rejection region and then 
estimate a. Fixing the rejection region may seem counter-intuitive in the context of traditional 
multiple-hypothesis testing. We argue in the next section that it can make sense in the context 
of false discovery rates. 

A natural objection to our proposed approach is that it does not offer 'control' of FDR. 
Actually, control is offered in the same sense as the former approach-our methodology provides 
a conservative bias in expectation. Moreover, since in taking this new approach we are in the 
more familiar point estimation situation, we can use the data to estimate mo, obtain confidence 
intervals on pFDR and FDR, and gain flexibility in the definition of the error measure. 

We show that our proposed approach is more effective, flexible and powerful. The multiple- 
hypothesis testing methods that we shall describe take advantage of more information in the 
data, and they are conceptually simpler. In Section 2, we discuss pFDR and its relationship 
to FDR, as well as using fixed rejection regions in multiple-hypothesis testing. In Section 3 we 
formulate our approach, and in Section 4 we make a heuristic comparison between the method 
proposed and that of Benjamini and Hochberg (1995). Section 5 provides numerical results, 
comparing our approach with the current one. Section 6 describes several theoretical results 
pertaining to the proposed approach, including a maximum likelihood estimate interpretation. 
Section 7 describes a quantity called the q-value, which is the pFDR analogue of the p-value, 
and Section 8 argues that the pFDR and the q-value are the most appropriate false discovery rate 
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quantities to use. Section 9 shows how to pick a tuning parameter in the estimates automatically. 
Section 10 is the discussion, and Appendix A provides technical comments and proofs of the 
theorems. 

2. The positive false discovery rate and fixed rejection regions 

As mentioned in Section 1, two error measures are commonly used in multiple-hypothesis 
testing: FWER and FDR. FWER is the traditional measure used; Benjamini and Hochberg 
(1995) recently introduced FDR. Table 1 summarizes the various outcomes that occur when 
testing m hypotheses. 

V is the number of type I errors (or false positive results). Therefore, FWER is defined to 
be Pr(V ? 1). Controlling this quantity offers a very strict error measure. In general, as the 
number of tests increases, the power decreases when controlling FWER. FDR is defined to be 

FDR =E ( R> 0 Pr(R > 0), (1) 

i.e. the expected proportion of false positive findings among all rejected hypotheses times the 
probability of making at least one rejection. Benjamini and Hochberg (1995) and Benjamini and 
Liu (1999) provided sequential p-value methods to control this quantity. FDR offers a much 
less strict multiple-testing criterion over FWER and therefore leads to an increase in power. 

In Storey (2001), we define a new false discovery rate, pFDR. 

Definition 1. 

pFDR=E ( R >0. (2) 

The term 'positive' has been added to reflect the fact that we are conditioning on the event that 
positive findings have occurred. When controlling FDR at level a, and positive findings have 
occurred, then FDR has really only been controlled at level a/Pr(R > 0). This can be quite 
dangerous, and it is not the case for pFDR. See Storey (2001) for a thorough motivation of 
pFDR over FDR. 

Benjamini and Hochberg (1995) precisely define FDR to be expression (1) because this quan- 
tity can be controlled by a sequential p-value method. (Note, however, that weak control 
of FWER is implicitly embedded in this definition, i.e. FWER is controlled when all null 
hypotheses are true.) pFDR is identically 1 when all null hypotheses are true (m = mo), so 
the usual sequential p-value approach cannot be applied to this quantity. Therefore, to control 
pFDR, it must be estimated for a particular rejection region. 

A sequential p-value method allows us to fix the error rate beforehand and to estimate the 
rejection region, which is what has traditionally been done in multiple-hypothesis testing. In 
the context of FWER this makes sense. Because FWER measures the probability of making one 

Table 1. Outcomes when testing m hypotheses 

Hypothesis Accept Reject Total 

Null true U V mo 
Alternative true T S m 1 

W R m 
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or more type I error, which is essentially a '0-i' event, we can set the rate a priori at which this 
should occur. False discovery rates, in contrast, are more of an exploratory tool. For example, 
suppose that we are testing 1000 hypotheses and decide beforehand to control FDR at level 
5%. Whether this was an appropriate choice largely depends on the number of hypotheses that 
are rejected. If 100 hypotheses are rejected, then clearly this was a good choice. If only two 
hypotheses are rejected, then clearly this was a less useful choice. 

Therefore fixing the rejection region beforehand can be more appropriate when using pFDR 
or FDR. For example, when performing many hypothesis tests, it can make sense to reject all 
p-values that are less than 0.05 or 0.01. Also, expert knowledge in a particular field may allow 
us to decide which rejection regions should be used. 

It will also be seen that this approach allows us to control pFDR, which we find to be a more 
appropriate error measure. Probably the most important reason for fixing the rejecting region 
is that it allows us to take a conceptually simpler approach to complicated compound error 
measures such as pFDR and FDR. 

The q-value (Section 7) is the pFDR analogue of the p-value and allows the rejection regions 
to be determined by the observed p-values. This is more appropriate over either fixing the 
rejection region or fixing the error rate. But, by first fixing the rejection region in our approach, 
we can formulate the q-values quite easily. 

3. Estimation and inference for the positive false discovery rate and false 
discovery rate 

In this section, we apply the proposed approach to both pFDR and FDR. We first present a few 
simple facts about pFDR under independence to motivate our estimates. Suppose that we are 
testing m identical hypothesis tests H1, H2,..., Hm with independent statistics T1, T2,..., Tm. 
We let Hi = 0 when null hypothesis i is true, and Hi = 1 otherwise. We assume that the null 
Ti Hi = 0 and the alternative Ti Hi = 1 are identically distributed. We assume that the same 
rejection region is used for each test, which make the tests 'identical'. Finally, we assume that 
the Hi are independent Bernoulli random variables with Pr(Hi = 0) = 7ro and Pr(Hi = 1) = 7 l. 
Let r be the common rejection region for each hypothesis test. 

The following is theorem 1 from Storey (2001). It allows us to write pFDR in a very simple 
form that does not depend on m. For this theorem to hold we must assume that the Hi are 
random; however, for large m this assumption makes little difference. 

Theorem 1. Suppose that m identical hypothesis tests are performed with the independent 
statistics T1,..., Tm and rejection region F. Also suppose that a null hypothesis is true with a 

priori probability 7ro. Then 

7r0 Pr(T E FrlH = o) pFDR(F) = (3) 
Pr(T e IF) 

= Pr(H = OIT E r), (4) 

where Pr(T E F) = 7ro Pr(T E rlH = 0) + 7r Pr(T E rIH = 1). 

This paper will be limited to the case where we reject on the basis of independent p-values. 
See Storey and Tibshirani (2001) for a treatment of more general situations. It follows that for 
rejections based on p-values all rejection regions are of the form [0, y] for some y > 0. (See 
remark 1 in Appendix A for a justification of this.) For the remainder of the paper, instead of 
denoting rejection regions by the more abstract r, we denote them by -y, which refers to the 
interval [0, y]. 
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In terms of p-values we can write the result of theorem 1 as 

iro Pr(P< 7ylH = 0) 7 roy 

pFDR(7) -= Pr(P -< y) Pr(P < y) (5) 

where P is the random p-value resulting from any test. Under independence the p-values are 
exchangeable in that each comes from the null distribution (i.e. uniform[0,1]) with probability 
7ro and from the alternative distribution with probability 7rl. It is easiest to think about this in 
terms of simple versus simple hypothesis tests, but the theory also works for composite alternative 

hypotheses with a random effect (Storey, 2001). 
Since rom of the p-values are expected to be null, then the largest p-values are most likely to 

come from the null, uniformly distributed p-values. Hence, a conservative estimate of 7ro is 

#{pi > A)} W(A) 
(Ax) = m (-A (6) 

(1 - AX)m (1 - X)m 

for some well-chosen A, where pl,..., Pm are the observed p-values and W(A) = #{pi > A}. 

(Recall the definitions of W and R from Table 1.) For now we assume that A is fixed; however, 
we show how to pick the optimal A in Section 9. (Efron et al. (2001) used a different estimate of 
7ro in an empirical Bayes method that is related to pFDR.) A natural estimate of Pr(P ?< y) is 

#Ipi <' -4 R(-y) Pr(P < y) = #{pi } R(7) m m 

where R(-y) = #{Pi ?< y}. Therefore, a good estimate of pFDR(y) for fixed A is 

xe)= 
i7ro(A)X7y W(A)y 0Ax(7)= - = /-, ,, D/ , (8) 

Pr(P < 7) (1 - A) R(y7) 

pFDR and FDR are asymptotically equivalent for a fixed rejection region. We see in Section 6 
that Q (-) shows good asymptotic properties for pFDR. In fact, we show that it is a maximum 
likelihood estimate. However, because of finite sample considerations, we must make two slight 
adjustments to estimate pFDR. When R(y) = 0, the estimate would be undefined, which is 
undesirable for finite samples. Therefore, we replace R(y) with R(y) v 1. This is equivalent to 
making a linear interpolation between the estimate at [0, P(1)] and the origin. Also, 1 - (1 -7y)m is 
clearly a lower bound for Pr{R(-y) > 0}. Since pFDR is conditioned on R(y) > 0, we divide by 
1 - (1 - 7)m. In other words -/{ 1 - (1 - -)m } is a conservative estimate of the type I error, condi- 
tional that R(y) > 0. (See Section 8 for more on why we do this.) Therefore, we estimate pFDR as 

7^rO (A))y ~W(A)-y 
pFDR,() = o(A)7 (9) 

Pr(P <y 7){1 - (1 -7)m} (1 - A){Ry(7) v 1}{1 - (1 -y) m} 

Since FDR is not conditioned on at least one rejection occurring, we can set 

7^ro(A)-y W(A)y 
FDRx(Y) = 

ff 
(10) 

Pr(P y) (1 - A){R(Y)V 1' 

For large m these two estimates are equivalent, but we find the pFDR quantity to be more appro- 
priate and think that it should be used. When -y = 1/m, Pr{R(y) > 0} can be as small as 0.632, so 
FDR can be quite misleading as mentioned in the previous section. For fixed m and y -+ 0, 
FDR(y) and FDRxy() show unsatisfying properties, and we show this in Section 8. 
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We show in Section 6 that pFDR (y) and FDR (y) offer an analogous property to strong 
control in that they are conservatively biased for all 7ro. However, as we argued in Section 1, 
the expected value of a multiple-hypothesis testing procedure is not a sufficiently broad picture. 
Since the p-values are independent, we can sample them with replacement to obtain standard 
bootstrap samples. From these we can form bootstrap versions of our estimate and provide upper 
confidence limits for pFDR and FDR. This allows us to make much more precise statements 
about how much multiple-hypothesis testing control is being offered. The full details of the 
estimation and inference ofpFDR(y) are given in algorithm 1. The same algorithm holds for the 
estimation and inference of FDR(-), except that we obviously use FDRA(7) instead. In Section 
9, we extend our methodology to include an automatic method for choosing the optimal A. 

If pFDR(7y) > 1, we recommend setting pFDR(7y) = 1 since obviously pFDR(y) < 1. 
We could smooth the estimate so that it is always less than or equal to 1, but we have taken a 
simpler approach here. The same comment holds for FDRX (7). 

Even though the estimates presented in this section are new, the approach has implicitly 
been taken before. Yekutieli and Benjamini (1999) introduced the idea of estimating FDR un- 
der dependence within the Benjamini and Hochberg (1995) framework. Also, Benjamini and 
Hochberg (2000) incorporated an estimate of mo into their original algorithm in a post hoc 
fashion. Tusher et al. (2001) fixed the rejection region and estimated FDR. 

3.1. Algorithm 1: estimation and inference for pFDR(y) and FDR(y) 

(a) For the m hypothesis tests, calculate their respective p-values p1,..., Pm. 
(b) Estimate 7ro and Pr(P (< y) by 

(A) W(A) 
(1 - A)m 

and 

R() v 1 
Pr(P R () = 

m 

where R(y) = #{pi < 7} and W(A) = #{pi > A}. 

(c) For any rejection region of interest [0, 7], estimate pFDR(y) by 

/ro(A)7 
pFDR(7) = o 

Pr(P < ){l -(1 - 7)m} 

for some well-chosen A. (See Section 9 for how to choose the optimal A.) b 
(d) For B bootstrap samples of pI,..., Pm, calculate the bootstrap estimates pFDR, (y) 

(b = 1,..., B) similarly to the method above. 
(e) Form a -l a upper confidence interval for pFDR(y) by taking the 1 - a quantile of 

the pFDRA (y) as the upper confidence bound. 
(f) For FDR(7), perform this same procedure except using 

FDRA(Y) = (A)7 (11) 
Pr(P < y) 
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4. A connection between the two approaches 

In this section we present a heuristic connection between the sequential p-value method of 

Benjamini and Hochberg (1995) and the approach presented in the previous section. The goal 
is to provide insight into the increased power and effectiveness of our proposed approach. 

The basic point that we make is that using the Benjamini and Hochberg (1995) method to 
control FDR at level a/7to is equivalent to (i.e. rejects the same p-values as) using the proposed 
method to control FDR at level a. The gain in power from our approach is clear-we control 
a smaller error rate (a < a/7ro), yet reject the same number of tests. 

Let p(1) < ... P(m) be the ordered, observed p-values for the m hypothesis tests. The 
method of Benjamini and Hochberg (1995) finds k such that 

k = max{k: P(k) < (k/m)a}. (12) 

Rejecting P(1),..., P(k) provides FDR < a. 
Now suppose that we use our method and take the most conservative estimate ?7o = 1. Then 

the estimate FDR(7) < a if we reject p(), ..., P(i) such that 

I = max{l: FDR(p(/)) s a}. (13) 

But since 
A i'o p(1) 

FDR(p(l) = ( 
I/m 

this is equivalent to (with ro = 1) 

I = max{l: p(l) < (I/m)ra}. (14) 

Therefore, k = I when 1ro = 1. Moreover, if we take the better estimate 

#{pi > A} (15) 
(1 - A)m 

then I > k with high probability. 
Therefore, we have shown that i > k. In other words, using our approach, we reject a greater 

number of hypotheses while controlling the same error rate, which leads to greater power. The 
operational difference between FDR(7y) and the Benjamini and Hochberg (1995) procedure 
is the inclusion of 7i0o(A). It is important to note, however, that we did not simply reverse their 
method and stick in 'iro(A). Rather, we took a very different approach, starting from simple facts 
about pFDR under independence with fixed rejection regions. Benjamini and Hochberg (1995) 
did not give us much insight into why they chose their particular sequential p-value method. 
This comparison sheds some light on why it works. 

5. A numerical study 

In this section we present some numerical results to compare the power of the Benjamini and 
Hochberg (1995) procedure with our proposed method. As mentioned in Section 4, it is not 
straightforward to compare these two methods since Benjamini and Hochberg (1995) estimated 
the rejection region whereas our method estimates FDR. We circumvent this problem by using 
the Benjamini-Hochberg procedure to control FDR at level FDR (y) for each iteration. 
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We looked at the two rejection regions y = 0.01 and y = 0.001 over several values of 7ro. The 
values of y and 7ro were chosen to cover a wide variety of situations. We performed m = 1000 
hypothesis tests of p = 0 versus tu = 2 for independent random variables Zi ~ N(p, 1), i = 
1,..., 1000, over 1000 iterations. The null hypothesis for each test is that ,u = 0, so the proportion 
of Zi ~ N(0, 1) was set to 7ro; hence, 711 of the statistics have the alternative distribution N(2, 1). 
For each test the p-value is defined as pi = Pr{N(0, 1) zi }, where zi is the observed value of 
Zi. 

To calculate the power of our method, test i was rejected if pi < y, and the power was 
calculated accordingly. Also, FDR(7) was calculated as we outlined in Section 3. The Benjamini- 
Hochberg method was performed at level FDR(y), and the power was calculated. This approach 
should put the two methods on equal ground for comparison; reporting FDR(7) is equival- 
ent in practice to using the Benjamini-Hochberg method to control FDR at level FDR(-). 

The simulations were performed for 7r0 = 0.1,0.2,..., 0.9. Even though here we know the 
alternative distribution of the p-values, we did not use this knowledge. Instead, we estimated 
FDR as if the alternative distribution was unknown. Therefore, we had to choose a value of A 
to estimate 7o; we used A = 2 in all calculations for simplicity. 

Table 2 shows the results of the simulation study. The first half of the table corresponds to 
y = 0.01, and the second half corresponds to 7 = 0.001. It can be seen that there is a substantial 
increase in power by using the proposed method. One case even gives an increase of over 800% 
in power. The power is constant over each case of our method because the same rejection region 
is used. The power of the Benjamini-Hochberg method increases as 7ro grows larger because 

Table 2. Numerical comparison between the Benjamini-Hochberg and proposed methods 

7r0 FDR Power E(FDR), E(iro), E(a), 
proposed proposed Benjamini- 
method method Hochberg 

Proposed Benjamini- method 
method Hochberg 

method 

=0.01 
0.1 0.003 0.372 0.074 0.004 0.141 0.0003 
0.2 0.007 0.372 0.122 0.008 0.236 0.0008 
0.3 0.011 0.372 0.164 0.013 0.331 0.001 
0.4 0.018 0.372 0.203 0.019 0.426 0.002 
0.5 0.026 0.372 0.235 0.027 0.523 0.003 
0.6 0.039 0.372 0.268 0.040 0.618 0.004 
0.7 0.060 0.371 0.295 0.061 0.714 0.005 
0.8 0.097 0.372 0.319 0.099 0.809 0.007 
0.9 0.195 0.372 0.344 0.200 0.905 0.008 

-= 0.001 
0.1 0.0008 0.138 0.016 0.001 0.141 1 x 10-5 
0.2 0.002 0.138 0.031 0.002 0.236 5 x 10-5 
0.3 0.003 0.137 0.046 0.003 0.331 0.0001 
0.4 0.005 0.138 0.060 0.005 0.426 0.0002 
0.5 0.007 0.138 0.074 0.008 0.523 0.0003 
0.6 0.011 0.138 0.088 0.011 0.618 0.0004 
0.7 0.017 0.138 0.101 0.017 0.714 0.0005 
0.8 0.028 0.138 0.129 0.030 0.809 0.0006 
0.9 0.061 0.137 0.133 0.066 0.905 0.0008 
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Fig. 1. Average power versus 1ro for the Benjamini-Hochberg method ( .....) and the proposed method 
( ): (a) rejection region defined by - = 0.01; (b) rejection region defined by -y = 0.001 (it can be seen 
that there is a substantial increase in power under the proposed method in both cases) 

the procedure becomes less conservative. In fact, it follows from Section 4 that, as 7ro -, 1, 
the Benjamini-Hochberg method becomes the proposed method. 

The fifth column of Table 2 shows E(FDR) for our method. It can be seen that this is very 
close to the true FDR in the second column (usually within 0.1%), and it is always conservative. 
The proposed method is nearly optimal in that it estimates FDR(y) basically as close as con- 
servatively possible for each rejection region. Therefore, we essentially lose no power regardless 
of the value of ro. Moreover the hemethod becomes better as the number of tests increases; the 
opposite has been true in the past. The sixth column shows E(ro) for our method. It can be 
seen that this estimate is always conservative and very close to the actual value. Recall that 
the Benjamini-Hochberg method essentially estimates the rejection region [0, y]. The eighth 
column shows E(') over the 1000 realizations of. It can b te seen that these estimates are quite 
conservative. The power comparisons are also shown graphically in Fig. 1. 

The success of our method also largely depends on how well we can estimate pFDR(y) and 
FDR(y). It is seen in this simulation that the estimates are very good. This is especially due to 
the fact that the power-type I error curve is well behaved in the sense discussed in Section 6. If 
we choose A more adaptively, the estimation is even better. This is the topic of Section 7. 

6. Theoretical results 

In this section, we provide finite sample and large sample results for pFDR(-y) and FDR (y). 
Our goal of course is to provide conservative estimates of pFDR(y) and FDR(-). For example, 
we want pFDRA(-y) > pFDR(-y) as much as possible without being too conservative. The 
following is our main finite sample result. 

Theorem 2. E{pFDRx(y)} ) pFDR(y) and E{FDRx(y)} > FDR(-y) for all y and 1ro. 

This result is analogous to showing 'strong control' of our method. The theorem is stated 
under the assumption that we do not truncate the estimates at 1. Of course in practice we would 
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truncate the estimates at 1 since FDR ? pFDR < 1, but the expected value of the estimates 
nevertheless behaves as we would want it to. The following result shows that truncating the 
estimates is a good idea when taking into account both bias and variance. 

Theorem3. E[{pFDRA(Y) - pFDR^y)}2] > E[{pFDRA(y) A 1 - pFDR(y)}2] and 
E[{FDRA(7) - FDR( 2]> E[FDR() A 1 - FDR()}2]. 

We now present large sample results for pFDR(7y).These results also hold for FDR(y) 
since FDR(-y) ~ pFDR(y).) The tightness to which pFDR(7) converges to an upper bound 
of pFDR(y) largely depends on how the power changes with the type I error. For this, let 
g(A) = Pr(P AIXH = 1) be the power as a function of type I error A. Note that g(.) is just the 
cumulative density function of the alternative p-values. For m identical simple tests, g(A) is the 
same for each test. If the alternative hypothesis is composite, then g(A) must be defined as the 
appropriate mixture. We assume that g(O) = 0, g(l) = 1 and g(A) > A for 0 < A < 1. 

Theorem 4. With probability 1, we have 

lim {pFDRA(y)} = r{ - 
g(A)/( - pFDR() pFDR(y). (16) m-->X 71-0ro 

This theorem can be understood graphically in terms of the plot of power against type I error 
for each rejection region [0, A]. The function g(A) gives the power over the rejection region [0, A], 
and of course the type I error over this region is A. The estimate of 7ro is taken over the interval 
(A, 1], so 1 - g(A) is the probability that a p-value from the alternative distribution falls into 
(A, 1]. Likewise, 1 - A is the probability that the null p-value falls into (A, 1]. The estimate of 7ro 
is better the more g(A) > A. This is the case since the interval (A, 1] will contain fewer alternative 
p-values, and hence the estimate will be less conservative. Fig. 2 shows a plot of g(A) versus A 
for a concave g. For concave g, the estimate of rro becomes less conservative as A -+ 1. This is 
formally stated in the following corollary. 

Corollary 1. For concave g 

o 

cd 

O / 

0 
C5 I 

0.0 0.2 0.4 0.6 0.8 1.0 

Type I Error X 

Fig. 2. Power g(A) versus type 1 error A: it can be seen that since g is concave {1 - g(A)}/(1 - A) grows 
smaller as A -- 1; the line has slope limxA1[{1 - g(A)}/(1 - A)], which is the smallest value of 
{1 - g(A)}/(1 - A) that can be attained for concave g 
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inf lim (pFDR),(y)} = lim lim {pFDRx(y)} \ m->oo -+1 m-+oo 

7ro + g'(1))rr = 
7 + 

pFDR(7) almost surely, (17) 
710 

where g'(1) is the derivative of g evaluated at 1. 

In other words, the right-hand side of equation (17) is the tightest upper bound that pFDR(-y) 
can attain on pFDR as m -> oo for concave g. The corollary can be seen graphically in Fig. 3. A 
plot of {1 - g(A)}/(1 - A) versus A is shown for a concave g. It can be seen that the minimum is 
obtained at A = 1. The minimum value is g'(1), which happens to be - in this graph. Whenever 
the rejection regions are based on a monotone function of the likelihood ratio between the null 
and alternative hypotheses, g is concave. If g is not concave, then the optimal A used in the 
estimate of 7ro may not be A = 1. 

A nice property of this last result is that g'(1) = 0 whenever doing a one-sided test of a single 
parameter of an exponential family. Therefore, in many of the common cases, we can achieve 
exact convergence as A -> 1. 

Recall the estimate Q,\() = 7io(A)-y/R(y) from equation (8) in Section 3. pFDRx(y) and 
FDRx (y) are modified versions of this that show good finite sample properties, as we have seen. 
It follows, however, that QAx(-) is a maximum likelihood estimate of the limiting quantity in 
theorem 4. 

Theorem 5. Under the assumptions of theorem 1, Qx (-) is the maximum likelihood estimate of 

7ro + rl{1 - g(A)}/(1 - 
A)FDR() (18) pFDR(7). (18) 

7rr 

This quantity is slightly greater than pFDR(y) for powerful tests. In situations where g is 
unknown, this estimate is, loosely speaking, 'optimal' in that the bias can usually be made arbi- 
trarily small (see corollary 1), while obtaining the smallest asymptotic variance for an estimator 
of that bias. pFDR(-y() has good finite sample properties (avoiding the inconveniences of the 
pure maximum likelihood estimate), but it is asymptotically equivalent to Qx(Y), so it has the 
same large sample properties. 

0 

g'(1)=1/4 
00 0.2 0.4 0.6 0.8 1.0 

with value g.'(l /4 

Fig. 3. {1 - g(,A)}/(1 - A) versus A for a concave g: it can be seen that the minimum is obtained at A = 1 
with value g~(1) =4 
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7. The q-value 

We now discuss a natural pFDR analogue of the p-value, which we call the q-value. This quantity 
was first developed and investigated in Storey (2001). The q-value gives the scientist a hypothesis 
testing error measure for each observed statistic with respect to pFDR. The p-value accomplishes 
the same goal with respect to the type I error, and the adjusted p-value with respect to FWER. 

Even though we are only considering hypothesis testing with independent p-values, it helps to 
introduce the q-value formally in a general setting to motivate its definition better. We shall also 
define the q-value in terms of p-values. For a nested set of rejection regions {F} (for example, 
{r} could be all sets of the form [c, oo) for -oo < c S oo), the p-value of an observed statistic 
T = t is defined to be 

p-value(t) = min {Pr(T E FIH = 0)). (19) 
{r:tEr} 

This quantity gives a measure of the strength of the observed statistic with respect to making 
a type I error-it is the minimum type I error rate that can occur when rejecting a statistic with 
value t for the set of nested rejection regions. In a multiple-testing situation, we can adjust the 
p-values of several statistics to control FWER. The adjusted p-values give a measure of the 
strength of an observed statistic with respect to making one or more type I error. As a natural 
extension to pFDR, the q-value has the following definition. 

Definition 2. For an observed statistic T = t, the q-value of t is defined to be 

q(t)= inf {pFDR(F)). (20) 
{r:tEr} 

In words, the q-value is a measure of the strength of an observed statistic with respect to pFDR- 
it is the minimum pFDR that can occur when rejecting a statistic with value t for the set of nested 
rejection regions. 

The definition is simpler when the statistics are independent p-values. The nested set of 
rejection regions take the form [0, y] and pFDR can be written in a simple form. Therefore, 
in terms of independent p-values, the following is the definition of the q-value of an observed 
p-value p. 

Definition 3. For a set of hypothesis tests conducted with independent p-values, the q-value 
of the observed p-value p is 

q(p) = inf {pFDR(7)} = inf { P }(21) 7'p Y>p Pr(P y 7) 

The right-hand side of the definition only holds when the Hi are random as in theorem 1. 
See Storey (2001) for more theoretical details about the q-value. Here, we propose the following 
algorithm for calculating q(pi) in practice. 

This procedure ensures that q(p(1)) < ... < q(p(m)), which is necessary according to our 
definition. The q-values can be used in practice in the following way: q(p(i)) gives us the minimum 
pFDR that we can achieve for rejection regions containing [0, p(i)] for i = 1,..., m. In other 
words, for each p-value there is a rejection region with pFDR equal to q(p(i)) so that at least 

P(1), ... , (i) are rejected. Note that we write the calculated q-values as q(p(i)). This is because 
q(p(i)) is an estimate of q(p(i)). The exact operating characteristics of (p(i)) are left as an open 
problem, but simulations show that it behaves conservatively, as we would want. 
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7.1. Algorithm 2: calculating the q-value 

(a) For the m hypothesis tests, calculate the p-values p,..., Pm. 
(b) Let P(1) < ... <(m) be the ordered p-values. 
(c) Set q(p(m)) = pFDR(Pm)). 
(d) Set q(p(i)) = min{pFDR(p(i)), q(p(i+l))} for i = m - 1, m - 2,..., 1. 

8. The advantages of pFDR(-y) and q over FDR(-y) 

In this section, we take a closer look at the differences between pFDRA(y) and FDRA(-y), and 
why it makes sense to use pFDR and the q-value. Consider the following fact for fixed m: 

lim (pFDR (y)} = iro(A). (22) 

In other words, as we make the rejection region increasingly smaller, we eventually estimate 
pFDR as 7ro(A). This is the conservative thing to do since all that we can conclude is that 

lim{pFDR(-)} < 7ro. 

probability ir-0(A) in extremely small rejection regions. 

Also, under no parametric assumptions, this is exactly what we would want. For example, 

suppose that we take a very small rejection it is most liFDR(kely = 0. But th only reason why we 

always achieve this convergence is because of the extra term Pr{R(-y) > 0} in FDR. Therefore, 

value falls into that region. Without information from other p-values, and without parametric 
information about the alternative distribution, there is little that we can say about whether this 

likely it would be that a p-value is null or alternative. Therefore, it makes sense to estimate pFDR by the prior 
Therefore, if we were to define the q-value in melterms ofFDR, then for small p-valuesrejection regions. 

Note in contrast that 

lim {FDR (y)} = 0. (23) 

Do000 hypothesis ests of N(, 1) versus N(2, 1). 800 came from the only, 1) distributireason why we 

200 came from the alternative N(2, 1) distribution. Fig. 4(a) shows pFDR (-Y) and FDRA (y) as 

always achieve functions look similar exnvergence is because of the extra term Pr) > in FDR. Therefore, 
Fig. 4(b) zoom s in nea r zero, iwher e see that pFDthe rejection region is small rather than 

shoots down to 0. The q-value, however, sits steady where pFDRA (-y) reaches its minimum (at 

the fact that In othe 'rate words, thcoveries are false is small. After all, as we said above, there is 
not enough information about the alternative distribution in these small intervals to know how 

area near zero is arguably the most important region sine this is wh alternative.e the most significant p- 
values lie. Therefore, bif we were to define the q-value, we obtain robust estimates of FDR,uld be 

driven to Ojust because the p-value is small, even though we know little about how likely it came 
from the alternative hypothesis without serious assumptions. Consider Fig. 4. We performed 
1000 hypothesis tests of N(O, 1) versus N(2, 1). 800 came from the null N(O, 1) distribution and 
200 came from the alternative N(2, 1) distribution. Fig. 4(a) shows pFDR(7y) and FDRX(y) as 
a function of y, as well as the q-value as a function of the observed p-values. It can be seen that 
all three functions look similar except close to the oign. 

Fig. 4(b) zooms in near zero, where we see that pFDR(7y) shoots up to *ro(A), and FDRx(y) 
shoots down to 0. The q-value, however, sits steady where pFDR (y) reaches its minimum (at 
about p(lo)). In other words, the q-value calibrates where we start to receive enough information 
to make good statements about pFDR. FDR says nothing about 'the rate that discoveries are 
false' near the origin and merely measures the fact that we are near the origin. Moreover, the 
area near zero is arguably the most important region since this is where the most significant p- 
values lie. Therefore, by using pFDR(7y) and the q-value, we obtain robust estimates of pFDR, 
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Fig. 4. Plot of pEDR) ( ), FDR(y) (-------) and (*L__prthe N(0,1) versus N(2,1) example: it 
can be seen that pFDR(y) and q behave more reasonably than FDR(7) near the origin 

which we argue is the more appropriate error measure. The q-value bypasses our having fixed the 

rejection regions and makes the rejection regions random in the appropriate way. It also bypasses 
any need to fix the error rate beforehand, as must be done in the traditional framework. 

9. Calculating the optimal , 

In Section 3 we showed how to estimate pFDR(7) and FDR(7), using the fixed parameter A 
for the estimate of 70. In this section, we show how to pick A optimally to minimize the mean- 

squared error of our estimates. We present the methodology for pFDRA(y), although the same 

procedure works for FDRA(7). We provide an automatic way to estimate 

Abest = arg min (E[{pFDRA(7) - pFDR(7)12]). (24) 
AE[O, 1j 

We use the bootstrap method to estimate Abest and calculate an estimate of MSE(A) 
E[{pFDRA(7) - pFDR(7)12] over a range of A. (Call this range R; for example, we may take 
R = {0, 0.05, 0.10,...,0.951.) As mentioned in Section 3, we can produce bootstrap versions 

0.0 0.002 0.004 0.006 0.008 

(b) 

Fig. 4. Plot of pFD(-y) ( ), FDR('y) (-------) and ~ (.)Jr the N(0,1) versus N(2,1) example: it 
can be seen that pFDR(-y) and ~ behave more reasonably than FDR(-y) near the origin 

any need to fix the error rate beforehand, as must be done in the traditional framework. 

9. Calculating the optimal A 

for the estimate of rro. In this section, we show how to pick A optimally to minimize the mean- 
squared error of our estimates. We present the methodology for pFDRA (a), although the same 
procedure works for FDRA(e). We provide an automatic way to estimate 

Abest = arg min (E[{pFDRx(y) - pFDR(y)}2]). (24) 

We use the bootstrap method to estimate Abest and calculate an estimate of MSE(A) = 
E[{pFDRA(y) - pFDR(Q)}2] over a range of A. (Call this range R; for example, we may take 
R = {O, 0.05, 0.10, . .., 0.95}.) As mentioned in Section 3, we can produce bootstrap versions 
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pFDRA (y) (for b = 1,..., B) of the estimate pFDR (y) for any fixed A. Ideally we would like 
to know pFDR(y), and then the bootstrap estimate of the MSE(A) would be 

1 B - *b 1 
{pFDR (7) - pFDR(7)}. (25) 

B b=1 

However, we do not know pFDR(7), so we must form a plug-in estimate of this quantity (Efron 
and Tibshirani, 1993). For any A we have 

E{pFDRx(7)} ) min[E{pFDRx,(7))}] pFDR(7), (26) 
A 

as was shown in Section 6. Therefore, our plug-in estimate of pFDR(7y) is minAER {pFDRA, (7) }. 
The estimate of MSE(A) is then 

1 B *b 
MSE(A) = E [pFDRA (7) - min{pFDR, (7)}]2. (27) B b=1 A'ER 

This method can easily be incorporated in the main method described in Section 3 in a compu- 
tationally efficient way. Our proposed method for choosing A is formally detailed in algorithm 
3. Finally note that, in choosing A over the q-values, we can minimize the averaged MSE(A) 
over all the q-values and adjust algorithm 3 accordingly. 

We provide some numerical results under the following set-up. We tested m hypotheses of 
N(0, 1) versus N(1, 1) with the rejection region F = [c, oo). Each statistic is independent- 
therefore, when we form bootstrap statistics, we simply sample from the m statistics. We cal- 
culated Abest from the true mean-squared error for each case. For each set of parameters, we 
performed the bootstrap procedure on 100 data sets with B = 500 and then averaged their 
predicted mean-squared error curves. A was chosen by taking the minimum of the averaged 
mean-squared error curves. Taking the median of the 100 A produces nearly identical results. 

Fig. 5 shows the results for m = 1000 and c = 2 over the values 7ro = 1,0.8, 0.5, 0.2. Averaging 
over applications of the procedure only 100 times gives us the correct Abest for the first three cases. 
It is not important to predict the mean-squared error curve, but rather where its minimum is. It 
can also be seen from the plots that the bootstrap procedure produces a conservative estimate 
of the mean-squared error for any A. Table 3 shows simulation results for several other sets of 
parameters. It can be seen that even when A - Abest the difference in their true mean-squared 
errors is not very drastic, so the minimum mean-squared error is nearly attained in almost all 
the situations that we simulated. 

9.1. Algorithm 3: estimation and inference of pFDR(7) and FDR(y) with optimal A 

(a) For some range of A, say R = {0,0.05,0.10,...,0.95}, calculate pFDR^(7) as in 
Section 3. * 

(b) For each A E R, form B bootstrap versions pFDRx (-) of the estimate, b = 1,.., B. 
(c) For each A E R, estimate its respective mean-squared error as 

1 B ~ *b 
MSE(A) = - [pFDRx (y) - min{pFDR, (7)]2. (28) B b=1 A'ER 
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Fig. 5. Plots of MSE(A) versus A for r = [2, oo) for (a) 7r0 = 1, (b) 7ro = 0.8, (c) 7ro = 0.5 and (d) 71r = 0.2 
( , true mean-squared error; ......., mean-squared error predicted by the bootstrap procedure aver- 
aged over 100 applications) 

(d) Set A = arg minAER{MSE(A)}. Our overall estimate of pFDR(y) is 

pFDR(y) = pFDR y(7). (29) 

(e) Form a 1 - a upper confidence interval of pFDR(y) by taking the 1 - a quantile of ?1 ---- 

{pFDR,i (y),..., pFDR, (y)} as the upper end point th lower end point being 0). 
(f) In estimating FDR, perform this same procedure with FDR(^y) instead. 

10. Discussion 

In this paper, we have proposed a new approach to multiple-hypothesis testing. Instead of setting 
the error rate at a particular level and estimating the rejection region, we have proposed fixing 
the rejection region and estimating the error rate. This approach allows a more straightforward 
analysis of the problem. We have seen that the result is a more powerful and applicable method- 
ology. For example, we estimated a new definition, the positive false discovery rate, one which 
we argued is usually much more appropriate. And we successfully 'controlled' it. By using theo- 
retical results about pFDR with fixed rejection regions, we could derive well-behaved estimates 
of both pFDR and FDR. Interestingly, the Benjamini and Hochberg (1995) step-up method 
naturally falls out of these results. 

Everything that we have discussed in this paper has been under the assumption that we 
are working with independent p-values. In more general cases, such as with dependence or in 
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Table 3. Simulation results for the bootstrap procedure to pick the 
optimal A 

7ro m Cut point Abest A MSE (best) MSE () 

1 1000 2 0 0 0.0602 0.0602 
0.8 1000 2 0.8 0.8 0.00444 0.00444 
0.5 1000 2 0.9 0.9 0.000779 0.000779 
0.2 1000 2 0.95 0.9 0.000318 0.000362 
0.8 100 2 0.75 0.65 0.123 0.127 
0.8 500 2 0.75 0.75 0.00953 0.00953 
0.8 10000 2 0.9 0.9 0.000556 0.000556 
0.8 1000 0 0.7 0.85 0.00445 0.00556 
0.8 1000 1 0.7 0.8 0.00361 0.00385 
0.8 1000 3 0.85 0.9 0.0323 0.0326 

nonparametric situations, it is possible to apply very similar ideas to obtain accurate estimates of 
pFDR and FDR. See Storey and Tibshirani (2001) for a treatment of this. There are several other 
open questions that this approach brings to light. Other, better, estimates may be available. One 
could also possibly prove optimality theorems with respect to estimating pFDR within certain 
frameworks. 

The q-value was discussed, which is the pFDR analogue of the p-value. Whereas it can be 
inconvenient to have to fix the rejection region or the error rate beforehand, the q-value requires 
us to do neither. By developing our methodology with fixed rejection regions, we could formulate 
the q-value in a conceptually simple manner. As an open problem, it is of interest to investigate 
the operating characteristics of the calculated q-values, which we called q. 

In a very interesting paper, Friedman (2001) discusses the role that statistics can play in the 
burgeoning field of data mining. Data mining involves investigating huge data sets in which 
'interesting' features are discovered. The classical example is determining which products tend 
to be purchased together in a grocery store. Often the rules for determining interesting features 
have no simple statistical interpretation. It is understandable that hypothesis testing has not 
played a major role in this field because, the more hypotheses we have, the less power there is 
to discover effects. The methodology presented here has the opposite property-the more tests 
we perform, the better the estimates are. Therefore, it is an asset under this approach to have 
large data sets with many tests. The only requirement is that the tests must be exchangeable in 
the sense that the p-values have the same null distribution. 

Even if the tests are dependent, our approach can be fully applied. It was shown in Storey 
(2001) that the effect of dependence is negligible if m is large for a large class of dependence. Also, 
Storey and Tibshirani (2001) treated the case where dependence cannot be ignored. Therefore, 
we hope that this proposed multiple-hypothesis testing methodology is useful not only in fields 
like genomics or wavelet analysis but also in the field of data mining where it is desired to find 
several interesting features out of many, while limiting the rate of false positive findings. 
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Appendix A: Remarks and proofs 
Remark 1. Here, we explain why rejection regions for p-values should be of the form [0, -y]. Recall that, 

for a nested set of rejection regions {F}, the p-value of X = x is defined to be 

p-value(x) = inf {Pr(X e rIH = 0)}. (30) 
{F:xEr} 

Therefore, for two p-values pi and P2, PI - P2 implies that the respective observed statistics xi and x2 are 
such that X2 E r implies xl E r. Therefore, whenever P2 is rejected, p, should also be rejected. 

Proof of theorem 1. See Storey (2001) for a proof of theorem 1. 

Proof of theorem 2. Recall pFDRAey) from equation (9). Also note that 

pFDR(-y) = 1 E1 V -V'Y) (31) 
Pr{ R(-y) > 0} R(y) vlI 

Therefore, 

{F ( } p ( ) W(A)/(l( - A)}y - V(,y) 1 
EJpFDRA(_Y)I - pFDR(-y) _>- E 

R(Qy) v 1} Pr{R(-y) > }' (32) 

since Pr{R(y) > 0}) 1 - (1 - -y)m under independence. Conditioning on R(y), it follows that 

{ W(A)/(I - A)}y - VQy) 1 [E{W(A)IR(-y)}/(1 - A)]-y - E{V(,y)IR(y)} 
{R(-y) v 1} Pr{R(-y) > 0 I J R(-y) v I} Pr{R(-y) > 0} 

By independence, E{W(A)IR(-y)} is a linear non-increasing function of R(y), and E{ VQy) I R(y)} is a linear 
non-decreasing function of R(-y). Thus, by Jensen's inequality on R(-y) it follows that 

{ I W(A)/(l - A)}y - V(y) R(y) >0] > E[{W(A)/(1 - A)}y - V('y)jR(y)> 01 (34) 
R(y) Pr{R(7) > 0} E{R(y)IR(y) > 0} Pr{R(-y) > 0} 

Since E{R(-y)} = E{R(y)IR(-y) > 0} Pr{R(y) > 0}, it follows that 

E[{W(A)/(1 - A)}y - VQy)IR(y) > 0] = E[{W(A)/(I - A)}y - V(y)IR(y) > 0] (35) 
E{R(y)IR(y) > 0} Pr{R(y) > o} E{R(y)} 

Also, note that 

E{ W(A)/(I -A)}y -V(yy)1 [ 0= W(A)y R-y)= 0] (36) 
{R(,y)v 1i Pr{R(-y) > 0} [(1-A) Pr{R(7) >.0} 

, E[(1 - R( 
E'R(y)I R(-y) = 0o] (37) 

where the last inequality holds since E{R(y)} > Pr{R(y) > 0}. Therefore, 

[{W(A)/(l - A)}y - VQy) 
E{pFDRA(-y)} - pFDR(y) E f R(Qy) V I} Pr{R(y) > 

o} (38) 

E[{W(A)/(l - A)Iy - VQy)IR(-y) > 0] Pr{R(-) > 0} (39) 
E{R(y)} 

E[{W(A)/(l - A)}71RQy) 0] 
Pr{R(y) = 0} (40) 

E{R(-y)}I 
E[{W(A)/(1 - A)17 - V(-y)] 

E{ R-y)}(41) 
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Now 

E[{W(A)/(1 - A)}y - V(y)] { m7ro(1 - A)/(1 - A)}y - m17ro y = 0. (42) 

Thus, E{pFDR,(-y)} - pFDR(-y) ) 0. 
Since we showed that 

E I(A)(l- A)h^ - V(-Y) I>0,(3 
R(y) v 1} Pr{R(y) > 0} 

0 43 

and 

1 [E{F3DR7)}- FDR(.)] = E[~ iW()/(I - )}y -v(y)1 (44) 
Pr{R(-y) > 0} E{R(y) v 1} Pr{R(y) > 0} J' 

it follows that E{FDRA((y) I FDR(-y). 

Remark 2. It was implicitly used in the previous proof that the Hi are random. However, this assumption 
is unnecessary, and in fact the assumption that the alternative statistics are independent is also unnecessary. 
See Storey and Tibshirani (2001) for a proof of theorem 2 under these weaker assumptions. 

Proof of theorem 3. The proof of theorem 3 easily follows by noting that 

E[{pFDRA(y) - pFDR&y)}2IpFDR,(y) > 1] > E[{pFDR,(\y) A 1 - pFDR y)}2IpFDR,('y) > 1] 
(45) 

since pFDR(y) < 1. The proof for FDRA(\y) follows similarly. 

Proof of theorem 4. Recall pFDR,\fy) from equation (9). By the strong law of large numbers, 
Pr(P ( y) -* Pr(P < -y) almost surely. Also, Pr(P ) AIH = 0) = 1 - A andPr(P > AIH = 1) = 1 -g(A), 
where g(A) is the power of rejecting over [0, A] as described in Section 6. Therefore, by the strong law of 
large numbers W(A)/m -+ (1 - A)iro + {1 - g(A)}ir, almost surely. Thus, it follows that 

[lro + 7r,1{1 - g(A)}/(1 -A)]Iy Iiin IpFDRA(-Y)} 
M--*~00 Pr(P < y) 

=7ro 
+ 7r{I - g(A)}/(1 - 

A)pFDR(y) 
? 

pFDR(-y). (46) 

Proofofcorollary 1. Since g(A) is concave in A, {1 - g(A)}/(1 - A) is non-increasing in A. Therefore, 
the minimum of {1 - g(A)}/(I - A) is obtained at limA+I[{l - g(A)}/(1 - A)]. By L'Hopital's rule, 

lim[{1 - g(A)}/(1 - A)] = g'(1). 

Proof of theorem 5. We can observe both R(-y) and R(A). Under the assumptions of theorem 1, it follows 
that the likelihood of the data can be written as 

{7roy + (1 - 7ro) gQy)}R(y){l _ -7r0_ - (1 - 7r0) g(_y)}m-R(y) (47) 

and also 

{iroA ? (1 - iro) g(A)}IR(A)1 - irA - (1 - 7ro) g(A)} m-R(A) (48) 

The result follows from standard methods. 

Remark 3. If g(.) is known then the maximum likelihood estimate of pFDRQy) is 

j_o-Y {g(,y) - RQy)/m}y 
e - F -g (49) 

F(,y) fg(7) - y)R(,y)1m 
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